Home   /   Our People   /   Profiles   /   kcoyne   /   Highlighted publications

Highlighted publications


Recent Student Publications

Investigation of the algicidal exudate produced by Shewanella sp. IRI-160 and its effect on dinoflagellates

Kaytee L. Pokrzywinski, Allen R. Place, Mark E. Warner and Kathryn J. Coyne

Published in Harmful Algae, September, 2012, volume 19, pages 23-29.


The bacterium, Shewanella sp. IRI-160, was previously shown to have negative effects on the growth of dinoflagellates, while having no negative effects on other classes of phytoplankton tested. In this study, we investigated the mode of algicidal activity for Shewanella sp. IRI-160 and found that the bacterium secretes a bioactive compound. The optimum temperature for production of the algicidal compound by this bacterium was at 30 °C. Bacteria-free filtrate of medium containing the algicide (designated IRI-160AA) was stable at temperatures ranging from −80 °C to 121 °C, and could be stored at room temperature for at least three weeks with no loss in activity. Algicidal activity was eluted in the aqueous portion after C18 extraction, suggesting that the active compound is likely polar and water-soluble. The activity of IRI-160AA was examined on a broad range of dinoflagellates (Karlodinium veneficumKarenia brevisGyrodinium instriatumCochlodinium polykrikoidesHeterocapsa triquetraProrocentrum minimum,Alexandrium tamarense and Oxyrrhis marina) and three species from other classes of algae as controls (Dunaliella tertiolectaRhodomonas sp. and Thalassiosira pseudonana). Algicidal activity was observed for each dinoflagellate and little to no negative effect was observed on chlorophyte and cryptophyte cultures, while a slight (non-significant) stimulatory effect was observed on the diatom culture exposed to the algicide. Finally, the effect of the algicide at different growth stages was investigated for K. veneficum and G. instriatum. IRI-160AA exhibited a significantly greater effect during logarithmic growth compared to stationary phase, suggesting a potential application of the algicide for prevention and control of harmful dinoflagellate blooms in the future.


Elif Demir-Hilton, David A. Hutchins, Kirk J. Czymmek, Kathryn J. Coyne

Published in Journal of Phycology, Volume 48, October, 2012, Pages 1220-1231


Delaware's Inland Bays (DIB), USA, are subject to blooms of potentially harmful raphidophytes, including Heterosigma akashiwo. In 2004, a dense bloom was observed in a low salinity tributary of the DIB. Light microscopy initially suggested that the species was H. akashiwo; however, the cells were smaller than anticipated. 18S rDNA sequences of isolated cultures differed substantially from all raphidophyte sequences in GenBank. Phylogenetic analysis placed it approximately equidistant from Chattonella and Heterosigma with only ~96% sequence homology with either group. Here, we describe this marine raphidophyte as a novel genus and species, Viridilobus marinus(gen. et sp. nov.). We also compared this species with H. akashiwo, because both species are superficially similar with respect to morphology and their ecological niches overlap. V. marinus cells are ovoid to spherical (11.4 × 9.4 μm), and the average number of chloroplasts (4 per cell) is lower than in H. akashiwo (15 per cell). Pigment analysis of V. marinus revealed the presence of fucoxanthin, violaxanthin, and zeaxanthin, which are characteristic of marine raphidophytes within the family Chattonellaceae of the Raphidophyceae. TEM and confocal microscopy, however, revealed diagnostic microscopic and ultrastructural characteristics that distinguish it from other raphidophytes. Chloroplasts were in close association with the nucleus and thylakoids were arranged either parallel or perpendicular to the cell surface. Putative mucocysts were identified, but trichocysts were not observed. These features, along with DNA sequence data, distinguish this species from all other raphidophyte genera within the family Chattonellaceae of the Raphidophyceae.


CEOE School & Departments

School of Marine Science & Policy

Advancing the understanding, stewardship, and conservation of estuarine, coastal, and ocean environments.

Learn More
Department of Geological Sciences

Discovering how geological processes have operated over various time scales to create and influence the planet’s surface environments.

Learn More
Department of Geography

Investigating the interactions between people and the environment and the processes that explain the location of human and natural phenomena.

Learn More

College of Earth, Ocean, and Environment • 111 Robinson Hall • Newark, DE 19716 • USA
Phone: 302-831-2841 • E-mail: ceoe-info@udel.edu

Back to Top