Notice

This report was prepared by the University of Delaware’s Special Initiative on Offshore Wind for the New York State Energy Research and Development Authority (hereafter “NYSERDA”), with funding provided by the Rockefeller Brothers Fund, the New York Community Trust and the Mertz Gilmore Foundation. The study approach and methods for the report were decided upon solely by the contractor. Reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by NYSERDA or the State of New York. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. NYSERDA, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

NYSERDA makes every effort to provide accurate information about copyright owners and related matters in the reports we publish. Contractors are responsible for determining and satisfying copyright or other use restrictions regarding the content of reports that they write, in compliance with NYSERDA’s policies and federal law. If you are the copyright owner and believe a NYSERDA report has not properly attributed your work to you or has used it without permission, please email print@nyserda.ny.gov.
Acknowledgments

The Rockefeller Brothers Fund, the Mertz Gilmore Foundation and the New York Community Trust provided funding to the Special Initiative on Offshore Wind at the University of Delaware to prepare this study.

This study was prepared for NYSERDA to provide information on various technology and regulatory mechanisms to assist in achieving cost reduction as New York develops its offshore wind strategy. NYSERDA provided project management, content development, and editorial review for the study.

The Special Initiative on Offshore Wind would like to thank the following people for their help:

Project Advisory Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam Bruce</td>
<td>UK Offshore Wind Programme Board</td>
</tr>
<tr>
<td>Paul McCoy</td>
<td>McCoy Energy Consulting</td>
</tr>
<tr>
<td>Jens Eckhoff</td>
<td>German Offshore Energy Foundation</td>
</tr>
<tr>
<td>Doug Pfeister</td>
<td>Past President, OSWDC; PMSS America</td>
</tr>
<tr>
<td>Jérôme Guillet</td>
<td>Green Giraffe Energy Bankers</td>
</tr>
<tr>
<td>Jan-Fredrik Stadaas</td>
<td>Statoil</td>
</tr>
<tr>
<td>Chris Long</td>
<td>AWEA</td>
</tr>
<tr>
<td>Bruce Valpy</td>
<td>BVG Associates</td>
</tr>
<tr>
<td>Jan Matthiesen</td>
<td>The Carbon Trust</td>
</tr>
</tbody>
</table>

Expert Panel Reviewers

- Walt Musial
 National Renewable Energy Laboratory

- Gary Norton
 U.S. Department of Energy

- Aaron Smith
 National Renewable Energy Laboratory
Table of Contents

Notice ... ii
Acknowledgments .. iii
List of Figures .. vii
List of Tables .. vii
Acronyms and Abbreviations ... viii

Summary .. S-9

1 Introduction ... 1
 1.1 Study Objectives .. 2

2 Study Approach and Methods .. 3
 2.1 Resources ... 3
 2.2 Research Questions .. 3
 2.3 Methods ... 4
 2.3.1 Estimating Impact of Global Cost Reduction .. 4
 2.3.2 Estimating the Impact of U.S. Learning .. 10
 2.3.3 Developing NYS Interventions ... 11
 2.4 Study Assumptions .. 11
 2.5 Estimating Relative Changes in LCOE due to Interventions ... 14
 2.6 Literature Review ... 15
 2.6.1 Offshore Wind Cost Reduction Pathways Study (TCE) .. 15
 2.6.2 Cost Reduction Potentials on Offshore Wind in Germany (Stiftung) 17
 2.6.3 Installation, Operation and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy (NREL) ... 17
 2.6.4 Future Renewable Energy Costs: Offshore Wind (BVG Associates for KIC InnoEnergy) 18

3 Findings Regarding Global Cost Reduction and U.S. Learning Impacts .. 19
 3.1 Global Cost Reduction: Impacts on New York LCOE ... 19
 3.2 U.S. Learning/Scale Effects Impact on LCOE .. 22

4 Findings Regarding Impact of State Interventions .. 25
 4.1 Siting Interventions .. 26
 4.1.1 Siting Intervention 1: Site OSW Farms Closer to Shore ... 28
 4.1.1.1 Costs, Risks, and Challenges .. 29
 4.2 Predevelopment Interventions ... 31
 4.2.1 Predevelopment Intervention 1: Obtain Lease and Visibility for On-Site Conditions 31
 4.2.1.1 Additional Impacts of Intervention .. 33
 4.2.1.2 Costs, Risks and Challenges of the Intervention ... 34
List of Figures

Figure 1. Wind Farm Base Project Location ... 6
Figure 2. Build-Out Scenario with Competing Uses .. 8
Figure 3. Wind Farm Build-Out Locations .. 9
Figure 4. Effect of Continuous Global Cost Reduction Efforts on NYS LCOE (FC 2020 – 2023) 21
Figure 5. Impact of Continuous Global Cost Reduction and U.S. Learning on NY LCOE
(FC 2020-2023): Stagnant OSW Policy and Financing ... 24
Figure 6. Bureau of Ocean Energy Management (BOEM)-Designated Wind Energy Areas 27
Figure 7. O&M Costs vs. Distance to Shore ... 29
Figure 8. Build-Out Sites with Radial AC Connections .. 54
Figure 9. Build-Out Sites with HVDC Backbone .. 56
Figure 10. Impact of Interventions on LCOE ... 59
Figure 11. Impact of Project 1 Interventions ... 62
Figure 12. Impact of Project 2 Interventions ... 63
Figure 13. Impact of Project 3 Interventions ... 64
Figure 14. Impact of Project 4 Interventions ... 65
Figure 15. Sequencing of Specific Actions Needed to Implement Proposed Study Interventions 66

List of Tables

Table 1. Site Characteristics for Project Build-Out ... 10
Table 2. Technology Assumptions ... 12
Table 3. LCOE for FC 2020 Base Project Site: 5-MW v. 8-MW Turbines, Industry Efficiencies,
Stagnant OSW Policy and Financing .. 20
Table 4. LCOEs for FC 2020 – 2023 ... 21
Table 5. Comparison of Capital Costs (Stagnant OSW Policy and Financing) 22
Table 6. NYS LCOEs Incorporating 5% Learning per Doubling of U.S. Capacity: Assuming
Global Cost Reduction and Stagnant U.S. Policy and Financing 23
Table 7. Impact of U.S. Learning on NYS LCOE (Stagnant U.S. Policy and Financing) 23
Table 8. CAPEX and OPEX Reductions from Siting Closer to Shore 28
Table 9. LCOE Change Due to Siting Closer to Shore .. 29
Table 10. Siting Intervention 1: Site OSW Farms Closer to Shore 30
Table 11. Development Cost Reductions from Metocean, Geophysical & Geotechnical, and
Environmental Surveying ... 32
Table 12. Typical Development Costs for an Offshore Wind Farm 35
Table 13. Predevelopment Intervention 1: Obtain Lease and Visibility for On-Site Conditions 36
Table 14. Estimated Reductions from Creating a Pipeline of Projects 38
Table 15. Market Visibility Intervention 1: Creating Market Visibility 40
Table 16. Market Visibility Intervention 2: First Round Implementation 42
Table 17. Financing Intervention 1: Offshore Wind Revenue Policy 45
Table 18. Financial Intervention 2: Investment Partnership ... 47
Table 19. IO&M Intervention 1: Workforce Training .. 49
Table 20. IO&M Intervention 2: Port Development .. 52
Table 21. Impact of Transmission Intervention .. 55
Table 22. Impact on LCOE of Including Offshore Wind Transmission Costs 57
Table 23. Transmission Intervention 1: Offshore Backbone .. 58
Table 24. Interventions Bundled by Project .. 61
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP</td>
<td>Annual Energy Production</td>
</tr>
<tr>
<td>AMI</td>
<td>Area of Mutual Interest</td>
</tr>
<tr>
<td>BOEM</td>
<td>Bureau of Ocean Energy Management</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital Expenditure</td>
</tr>
<tr>
<td>CfD</td>
<td>Contract for Differences; In offshore wind, a CfD works by stabilizing revenues for generators at a fixed price level. Under a CfD, generators will receive revenue from selling their electricity into the market as usual. However, if and when the market reference price is below the fixed price the generator will also receive a payment from suppliers to bring the revenue to the fixed amount. Conversely if the reference price is above the fixed price, the generator must pay back the difference.</td>
</tr>
<tr>
<td>DEVE</td>
<td>Development Expenses</td>
</tr>
<tr>
<td>DOS</td>
<td>NYS Department of State</td>
</tr>
<tr>
<td>EPC</td>
<td>Engineering, Procurement, and Construction</td>
</tr>
<tr>
<td>FC</td>
<td>Financial Close; triggers ability to enter contracts for construction (project financing) or draw downs for construction expenditures (balance sheet financing); for this study, U.S. construction was assumed to start one year after FC and last 2 years followed by 6 month site commissioning prior to wind farm operation.</td>
</tr>
<tr>
<td>FEED</td>
<td>Front End Engineering and Design: The work required to produce process and engineering documentation of sufficient quality and depth to adequately define the project requirements for detailed engineering, procurement, and construction of facilities and to support a ±10 percent project cost estimate.</td>
</tr>
<tr>
<td>FID</td>
<td>Final Investment Decision; Typically used in context of equity decision, stage in a financial agreement where conditions have been satisfied or waived and documents executed; triggers draw-downs and project execution.</td>
</tr>
<tr>
<td>FiT</td>
<td>Feed-in Tariff; An economic policy created to promote active investment in and production of renewable energy sources. Feed-in tariffs typically make use of long-term agreements and pricing tied to costs of production for renewable energy producers.</td>
</tr>
<tr>
<td>GG</td>
<td>Green Giraffe</td>
</tr>
<tr>
<td>G&G</td>
<td>Geophysical and Geotechnical</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IO&M</td>
<td>Installation, Operations, and Maintenance</td>
</tr>
<tr>
<td>IRR</td>
<td>Internal Rate of Return</td>
</tr>
<tr>
<td>KIC</td>
<td>Knowledge Innovation Cluster</td>
</tr>
<tr>
<td>LCOE</td>
<td>Levelized Cost of Energy</td>
</tr>
<tr>
<td>Metocean</td>
<td>meteorological and oceanographic</td>
</tr>
<tr>
<td>nm</td>
<td>nautical miles</td>
</tr>
<tr>
<td>NREL</td>
<td>National Renewable Energy Laboratory</td>
</tr>
<tr>
<td>NYS</td>
<td>New York State</td>
</tr>
<tr>
<td>OCS</td>
<td>Outer Continental Shelf</td>
</tr>
<tr>
<td>OFTO</td>
<td>Offshore Transmission Operator</td>
</tr>
<tr>
<td>OFWIC</td>
<td>Offshore Wind Integrated Cost</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operational Expenditure</td>
</tr>
<tr>
<td>OMS</td>
<td>Operations, Maintenance, and Service</td>
</tr>
<tr>
<td>OSW</td>
<td>Offshore Wind</td>
</tr>
<tr>
<td>POI</td>
<td>Point of Interconnection: The point where interconnection facilities connect to a transmission provider’s transmission system. As defined in standard large generator interconnection agreements.</td>
</tr>
<tr>
<td>PPA</td>
<td>Power Purchase Agreement</td>
</tr>
<tr>
<td>SIOW</td>
<td>Special Initiative on Offshore Wind</td>
</tr>
<tr>
<td>TCE</td>
<td>The Crown Estate</td>
</tr>
</tbody>
</table>
S.1 Introduction

New York State’s offshore wind (OSW) resource presents substantial potential for production of zero-emission electricity. Indeed, many believe that offshore wind energy could become the most viable option for delivering utility-scale renewable electric generation to the densely populated downstate region of New York. Although onshore wind development has expanded rapidly in the U.S., exploiting offshore resources is more challenging than onshore development. OSW presents unique and complex development, construction, and operational conditions. There is also the need to establish offshore wind specific development and operational infrastructure that does not exist today in the U.S. Consequently, current cost estimates for offshore wind energy are substantially above market electricity prices.

According to Navigant’s Offshore Wind Market and Economic Analysis: 2014 Annual Market Assessment Report, the capital cost of offshore wind is in excess of $5,000 per kilowatt (kW). However, Navigant also reports that cost is declining.

This paper examines and quantifies the potential for reduced OSW project costs through technological innovation, global market maturation and actions that New York could undertake unilaterally or in collaboration with other Atlantic coast states.

S.2 Study Objectives and Approach

The objectives of this study were to identify and quantify:

- Global cost-reduction opportunities for OSW that will be transferrable to the U.S. and NYS
- Cost reductions associated with U.S. experience (or learning) as additional NYS projects are deployed
- NYS-specific interventions or actions to reduce the cost of offshore wind and their associated impacts:
 - The sequence of actions necessary to meet these cost reductions and an explanation of any identified dependencies.
 - An evaluation of the risks and challenges associated with the suggested interventions.
 - An analysis of any scaling needed to achieve cost reductions.
 - An estimate of OSW cost reductions produced by each suggested intervention.
 - An estimate of the cost to NYS for each OSW interventions.
S.2.1 Study Approach

The University of Delaware’s Special Initiative on Offshore Wind (SIOW) identified a project site in the New York ocean that could be considered optimal for OSW energy production (limited distance to shore, nearby point of interconnection, and strong wind resource). On this project site, SIOW performed two analyses. First, an estimate was established of the Levelized Cost of Energy (LCOE) for a hypothetical OSW project (Base Project, see Figure 1 in Section 2.3, installed capacity of 600 MW) located in NYS waters using 5 MW wind turbines, assuming U.S. OSW policy and financing are stagnant. The term stagnant is used to represent a U.S. environment that does not have any supporting OSW federal or other state policies that would lead to a more favorable OSW financing environment.

Second, an estimate was established at the same project site assuming stagnant U.S. OSW policy, but adding global innovations in technology with an increase in turbine scale to 8 MW, increased competition in the OSW supply chain, and industry-wide efficiencies driven by European market demand (collectively, global cost reductions) applied to derive a revised LCOE. This study did not include any consideration of federal incentives such as PTC, ITC or carbon credits.

According to published analyses, 5 MW wind turbines have been expected to be used in new U.S. offshore wind projects, consistent with recent European projects. 6 MW and 8 MW turbines have recently become commercially available.

The SIOW team next identified four additional project sites, each having a nameplate rating of 600 MW (Projects 1 through 4, See Figure 3 in Section 2.3), having a Financial Close (FC) each year from 2020 through 2023, for a total of 2.4 GW which served as a hypothetical “Build-out scenario.” LCOE’s were calculated for each of these projects assuming: 1) the range of global cost reductions expected to occur and be transferable to the US market throughout the build-out time frame, 2) the benefits of experience or “learning” in the U.S. associated with increased market demand and related activities (increased efficiencies), and 3) a group of NYS-specific market interventions applied over the build-out time. NYS-specific interventions were identified through stakeholder interviews and the impacts on delivered costs for each NYS-specific intervention were estimated using expert elicitation.

1 LCOE is the equivalent unit cost ($/MWh or ¢/kWh) that has the same present value as the total cost of building and operating a generating plant plus investor returns over the power plant’s life divided by total electrical generation. Levelized Cost of Electricity Calculator, NREL, http://www.nrel.gov/analysis/tech_lcoe.html
3 The projected LCOE’s did not include continuous technological development beyond FC 2023, such as 10-MW or larger turbines, which are concept and/or prototyping stages, further learning effects if U.S. scale grows by more than 3.5 GW between 2020 and 2023, nor further learning effects for market development beyond FC 2023.
LCOE is a commonly used metric for the cost of electricity produced by a power generator over the life of the project. The general inputs for calculating LCOE for OSW are capital expenditures, operating and maintenance costs, cost of capital, and the expected annual energy production of the OSW farm. This is different from a Power Purchase Agreement (PPA) price, another indicator often cited. The price of a PPA is very different from the cost of generation (LCOE) for an offshore wind project. Generally, LCOE prices will be higher than PPA prices. Furthermore, it is important to note that while LCOE is a useful metric for understanding how changing technological, market, or policy conditions can affect the fixed, variable, and financing costs of a generation technology, it is of limited use as a measure of the overall comparative value of a technology in practice. This is because LCOE does not consider system benefits, system costs, or environmental and health benefits.

S.3 Impacts on NYS LCOE

The study identifies and compares the impact of three main areas of cost reduction: global cost reductions, cost reductions associated with increasing U.S. learning/scale, and cost reductions associated with NYS interventions. These cost reductions were applied sequentially to the prospective NYS projects to determine the relative and total applicable impacts to LCOE.

S.3.1 Global Cost Reductions

To achieve the first objective of the study which was to consider the impact of global cost reductions in isolation, the team first calculated LCOE of OSW using a 5 MW turbine for the study’s Base project and compared that to the calculated LCOE of OSW using an 8 MW turbine including the technological innovations and industry efficiencies anticipated to be pulled to market by 2020. The team further analyzed the impact of the continuous technological improvement anticipated from FC 2020 to FC 2023 on the LCOEs for subsequent projects in the Build-out scenario.

Table S-1 and Figure S-1 illustrate changes in LCOE by project attributable only to global cost reductions. Specifically, Table S-1 and Figure S-1 show that even in a stagnant U.S. policy and financing environment, a 22% decrease in LCOE can be derived from moving to larger turbines with ongoing technology improvement and industry efficiencies. The 5 MW turbine in a stagnant U.S. policy and financing environment produces an LCOE of over $290 per megawatt-hour (MWh) versus about $226/MWh after capturing global advances in technology through the use of larger turbines and global industry maturation. Moreover, anticipated continuous technological development between 2020 and 2023 are expected to result in continuous downward pressure on delivered costs, again continuing to assume an immature U.S. policy and financing environment. This decrease may be partially offset by increases in costs associated with moving to deeper water sites as projects are installed. For this period of study and the referenced cost reduction analysis, the study team assumed a U.S. installed capacity of roughly 750 MW of OSW by the end of 2020. The team assumed the installation of the Cape Wind project in Massachusetts, the Deepwater Wind project off Block Island in Rhode Island, the U.S. Wind project off the coast of Maryland, and the three U.S. DOE advanced technology demonstration projects under development at the time of this writing.

Table S-1. Impact of Continuous Global Cost Reduction on NYS LCOE (Stagnant OSW Policy and Financing)

<table>
<thead>
<tr>
<th>Project</th>
<th>Financial Close Year</th>
<th>LCOE ($/MWh)</th>
<th>% Change from Base Project - 5 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Project – 5 MW</td>
<td>2020</td>
<td>291.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Base Project – 8 MW</td>
<td>2020</td>
<td>226.5</td>
<td>- 22%</td>
</tr>
<tr>
<td>1<sup>6</sup></td>
<td>2020</td>
<td>220.5</td>
<td>- 24%</td>
</tr>
<tr>
<td>2</td>
<td>2021</td>
<td>206.5</td>
<td>- 29%</td>
</tr>
<tr>
<td>3</td>
<td>2022</td>
<td>205.5</td>
<td>- 29%</td>
</tr>
<tr>
<td>4<sup>7</sup></td>
<td>2023</td>
<td>222.5</td>
<td>- 24%</td>
</tr>
</tbody>
</table>

The LCOE increases with later projects as the project sites move to deeper water.

⁵ The team assumed the installation of the Cape Wind project in Massachusetts, the Deepwater Wind project off Block Island in Rhode Island, the U.S. Wind project off the coast of Maryland, and the three U.S. DOE advanced technology demonstration projects under development at the time of this writing.

⁶ Base project sited at 12 nautical miles (nm) from shore; Project 1 sited at 9 nm from shore.

⁷ The LCOE increases with later projects as the project sites move to deeper water.
Cost figures for the 5 MW turbine and foundation were estimated using proprietary cost data available to the team members as well as publicly available data. Cost figures for the 8 MW turbine at Financial Close 2020 came from BVG Associates (1) see Bibliography. Cost figures for the 8 MW turbine for FC 2021 – FC 2023 also came from BVG Associates (2), see Bibliography.
S.3.2 U.S. Learning/Scale

The second objective of the study is to quantify the effect of learning curves (also known as experience curves) on NYS offshore wind LCOE. Learning curves express the trend for cost of a technology to decrease as higher quantities of that technology are deployed to its market. As OSW projects are installed and operated in the U.S, acquisition of new skills and knowledge in project development and operations are expected to lower project cost and ultimately LCOE. To analyze the impact of this learning, the SIOW applied a learning rate of 5%, for every doubling of capacity installed\(^9\) over the study period. Using this rate of learning, the study team calculated LCOE’s for each project in the Build-out scenario (2.4 GW), assuming a parallel and additive market build out of 1.1 GW of OSW between the end of 2020 and the end of 2023.\(^{10}\) Table S-2 and Figure S-2 illustrate the changes in LCOE resulting from acquired U.S. learning or experience as the number of U.S. projects increases. These figures reflect that global cost reductions have been achieved but still assume a stagnant U.S. OSW policy and financing environment. The associated change in LCOE is on the order of 2%.

Table S-2. Impact of U.S. Learning on NYS LCOE (Stagnant OSW Policy and Financing)

<table>
<thead>
<tr>
<th>Project</th>
<th>Financial Close Year</th>
<th>LCOE Before 5% learning rate applied ($/MWh)</th>
<th>LCOE After 5% learning rate applied per doubling of U.S. Capacity ($/MWh)</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Project-8MW</td>
<td>2020</td>
<td>226.5</td>
<td>222.5</td>
<td>-1.8%</td>
</tr>
<tr>
<td>1(^{11})</td>
<td>2020</td>
<td>220.5</td>
<td>217.5</td>
<td>-1.4%</td>
</tr>
<tr>
<td>2</td>
<td>2021</td>
<td>206.5</td>
<td>202.5</td>
<td>-1.9%</td>
</tr>
<tr>
<td>3</td>
<td>2022</td>
<td>205.5</td>
<td>200.5</td>
<td>-2.4%</td>
</tr>
<tr>
<td>4</td>
<td>2023</td>
<td>222.5</td>
<td>216.5</td>
<td>-2.7%</td>
</tr>
</tbody>
</table>

\(^{10}\) The additional 3.5 GW of OSW between 2021 and 2023 assumed the construction of the study's hypothetical Build-out scenario (2.4 GW) and the implementation of New Jersey’s Offshore Wind Economic Development Act, which supports 1.1 GW of offshore wind in that state.

\(^{11}\) Base project sited at 12 nautical miles (nm) from shore; Project 1 sited at 9 nm from shore.
Figure S-2. Impact of Continuous Global Cost Reduction and US Learning on NYS LCOE (Stagnant OSW Policy and Financing)12

See footnote 10.
S.4 NY State Interventions

To achieve the study’s third objective, the team identified and quantified potential NYS interventions that could lower LCOE beyond the reductions achieved through global cost reductions and learning/scale. Specifically, the interventions studied were those expected to result in reduced financing costs, capital expenses (CAPEX), and operational expenditures (OPEX).

New York can benefit from inherently local cost reduction interventions such as:

- Creating a visible market of scale and duration (market visibility) through a long-term commitment to a pipeline of projects.
- Making project data available to the market over successive rounds of OSW project solicitations to reduce risks and lower the cost of capital, enhance competitive forces and drive cost efficiencies.
- Providing a high degree of site characterization for early projects thereby reducing development expenses and cost of development capital.
- Designing policy to ensure revenue contracts are available that substantially reduce risk to lenders.
- Creating and using innovative financing mechanisms and exploiting favorable borrowing conditions.
- Developing infrastructure to reduce costs, including both port facilities and a trained workforce.

Interventions and impacts were identified and examined in the areas of: market visibility; pre-development activities including site characterization; contracting and revenue certainty; financing; infrastructure development (investment in facilities and training), installation, operations, and maintenance; and transmission. Table S-3 identifies the cost impacts associated with each intervention examined on CAPEX, OPEX, annual energy production (AEP), weighted cost of capital (WACC) and LCOE.

It is critical to note that the impacts identified in Table S-3 are not additive as each was derived in isolation from the others which ignores the expected correlation among impacts caused by combining interventions.